Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
Food Chem Toxicol ; 185: 114454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237855

RESUMO

Evidence suggests that meat processing and heat treatment may increase cancer risk through exposure to potentially carcinogenic compounds, polycyclic aromatic hydrocarbons (PAHs), and heterocyclic aromatic amines (HAAs). This study aims to investigate the effect of low concentrations of PAHs and HAAs (from 1 to 100 µmol/L/24h and 48h) in colorectal tumor cells (HT-29, HCT116, and LS174T) and to evaluate the effect of PAHs in the presence of inulin in mice. In vitro, the 4-PAHs have no effect on healthy colon cells but decreased the viability of the colorectal tumor cells and activated the mRNA and protein expressions of CYP1A1 and CYP1B1. In vivo, in mice with colitis induced by 3% DSS, the 4-PAHs (equimolar mix at 50,100, 150 mg/kg.bw, orally 3 times a week for 3 weeks) induced a loss of body weight and tumor formation. Inulin (10 g/L) had no effect on colon length and tumor formation. A significant decrease in the loss of b.w was observed in inulin group as compared to the fiber free group. These results underscore the importance of considering the biological association between low-dose exposure to 4-HAPs and diet-related colon tumors.


Assuntos
Neoplasias Colorretais , Compostos Heterocíclicos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Camundongos , Inulina/farmacologia , Aminas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Suplementos Nutricionais , Compostos Heterocíclicos/toxicidade
2.
Arch Toxicol ; 97(12): 3197-3207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773275

RESUMO

Although aromatic amines are widely used as raw materials for dyes, some, such as o-toluidine and o-anisidine, have shown concerning results regarding carcinogenicity in the urinary bladder. We have recently developed a short-term detection method for bladder carcinogens using immunohistochemistry for γ-H2AX, a DNA damage marker. Here, using this method, we evaluated aromatic amines with structures similar to o-toluidine and o-anisidine for bladder mucosal damage and potential carcinogenicity. In total, 17 aromatic amines were orally administered to male F344 rats for 28 days, and histopathological examination and γ-H2AX immunostaining of the urinary bladder were performed. Histopathological analysis revealed that seven aromatic amines, including 4-chloro-o-toluidine (4-CT), o-aminoazotoluene, 2-aminobenzyl alcohol (ABA), o-acetotoluidine (o-AT), 3,3'-dimethoxybenzidine, 4-aminoazobenzene (AAB), and 4,4'-methylenedianiline (MDA), induced various bladder lesions, such as hemorrhage, necrosis, and urothelial hyperplasia. The morphological characteristics of mucosal damage induced by these substances were divided into two major types: those resembling o-toluidine and those resembling o-anisidine. Six of these aromatic amines, excluding MDA, also caused significant increases in γ-H2AX formation in the bladder urothelium. Interestingly, 4-CT did not cause mucosal damage or γ-H2AX formation at the lower dose applied in previous carcinogenicity studies. These results showed for the first time that o-AT and ABA, metabolites of o-toluidine, as well as AAB caused damage to the bladder mucosa and suggested that they may be bladder carcinogens. In addition, 4-CT, which was thought to be a noncarcinogen, was found to exhibit bladder toxicity upon exposure to high doses, indicating that this compound may contribute to bladder carcinogenesis.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Ratos , Animais , Masculino , Ratos Endogâmicos F344 , Aminas/toxicidade , Neoplasias da Bexiga Urinária/patologia , Carcinógenos/toxicidade , Histonas/metabolismo , Fosfoproteínas/metabolismo
3.
Meat Sci ; 205: 109312, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625356

RESUMO

Heterocyclic aromatic amines (HAAs) are detrimental substances can develop during the high-temperature cooking of protein-rich foods, such as meat. They are potent mutagens and carcinogens linked to an increased risk of various cancers. HAAs have complex structures with nitrogen-containing aromatic rings and are formed through chemical reactions between amino acids, creatin(in)e, and sugars during cooking. The formation of HAAs is influenced by various factors, such as food type, cooking temperature, time, cooking method, and technique. HAAs exert their toxicity through mechanisms like DNA adduct formation, oxidative stress, and inflammation. The research on HAAs is important for public health and food safety, leading to risk assessment and management strategies. It has also led to innovative approaches for reducing HAAs formation during cooking and minimizing related health risks. Understanding HAAs' chemistry and formation is crucial for developing effective ways to prevent their occurrence and protect human health. The current review presents an overview about HAAs, their formation pathways, and the factors influencing their formation. Additionally, it reviews their adverse health effects, occurrence, and the analytical methods used for measuring them.


Assuntos
Aminas , Aminoácidos , Humanos , Aminas/toxicidade , Carne , Estresse Oxidativo , Carcinógenos/toxicidade
4.
Arch Toxicol ; 97(10): 2697-2705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592049

RESUMO

Human N-acetyltransferase 2 (NAT2) is subject to genetic polymorphism in human populations. In addition to the reference NAT2*4 allele, two genetic variant alleles (NAT2*5B and NAT2*7B) are common in Europe and Asia, respectively. NAT2*5B possesses a signature rs1801280 T341C (I114T) single-nucleotide polymorphism (SNP), whereas NAT2*7B possesses a signature rs1799931 G857A (G286E) SNP. NAT2 alleles possessing the T341C (I114T) or G857A (G286E) SNP were recombinant expressed in yeast and tested for capacity to catalyze the O-acetylation of the N-hydroxy metabolites of heterocyclic amines (HCAs). The T341C (I114T) SNP reduced the O-acetylation of N-hydroxy-2-amino-3-methylimidazo [4,5-f] quinoline (N-OH-IQ), N-hydroxy-2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (N-OH-MeIQx) and N-hydroxy- 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (N-OH-PhIP), whereas the G857A (G286E) SNP reduced the O-acetylation of N-OH-IQ and N-OH-MeIQx but not N-OH-PhIP. The G857A (G286E) SNP significantly (p < 0.05) reduced apparent Km toward N-OH-PhIP but did not significantly (p > 0.05) affect apparent Vmax. Cultures of DNA repair-deficient Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B alleles were incubated with various concentrations of IQ, MeIQx or PhIP and double-stranded DNA damage and reactive oxygen species (ROS) were measured. Transfection with human CYP1A2 did not significantly (p > 0.05) increase HCA-induced DNA damage and ROS over un-transfected cells. Additional transfection with NAT2*4, NAT2*5B or NAT2*7B allele increased both DNA damage and ROS. The magnitude of the increases was both NAT2 allele- and substrate-dependent showing the same pattern as observed for the O-acetylation of the N-hydroxylated HCAs suggesting that both are mediated via NAT2-catalyzed O-acetylation. The results document the role of NAT2 and its genetic polymorphism on the O-acetylation and genotoxicity of HCAs.


Assuntos
Arilamina N-Acetiltransferase , Citocromo P-450 CYP1A2 , Animais , Cricetinae , Humanos , Células CHO , Espécies Reativas de Oxigênio , Cricetulus , Polimorfismo de Nucleotídeo Único , Dano ao DNA , Acetiltransferases , Aminas/toxicidade , Carcinógenos/toxicidade , Arilamina N-Acetiltransferase/genética
5.
Environ Pollut ; 335: 122366, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572848

RESUMO

Aromatic amines (AAs) are polar organic chemicals with a wide environmental distribution originating from various sources, such as tobacco smoke, diesel exhaust, and dermal absorption from textile products with azo dyes. The toxicity profile of AAs is directly related to the amino group's metabolic activation and the generation of the reactive intermediate, forming DNA adducts and potential carcinogenicity. Urinary levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) are an important biomarker of DNA damage. Since AAs have been shown to cross the placental barrier, being a risk factor for adverse birth outcomes, prenatal exposure is a great public health concern. The present study aimed to measure the urinary levels of 58 AAs in Brazilian pregnant women (n = 300) and investigated the impact of this exposure on DNA damage by quantifying 8OHdG levels. The influence of tobacco smoke exposure and dermal absorption of AAs by clothes on urinary levels was also assessed. The results showed a 100% detection rate for eight AAs, two of them regulated by the European Union (2,6-dimethylaniline and 2,4-diaminotolune). Hundreds of AAs may be derived from aniline, which here showed a median of 1.38 ng/mL. Aniline also correlated positively with 2,6-dimethylaniline, p-aminophenol, and other AAs, suggesting exposure to multiple sources. The present findings suggest that both tobacco smoke and dermal contact with clothes containing azo dyes are potential sources that might strongly influence urinary levels of AAs in Brazilian pregnant women. A multiple regression linear model (R2 = 0.772) suggested that some regulated AAs (i.e., 2-naphthylamine and 4-aminobiphenyl), nicotine, smoke habit, age, and Brazilian region could induce DNA damage occurrence, increasing the levels of 8OHdG. Given the limited available data on human exposure to carcinogenic AAs, as well as the lack of toxicological information on those non-regulated, further studies focused on measuring their levels in human fluids and the potential exposure sources are clearly essential.


Assuntos
Poluição por Fumaça de Tabaco , Gravidez , Humanos , Feminino , Gestantes , 8-Hidroxi-2'-Desoxiguanosina , Brasil , Placenta/química , Compostos de Anilina/análise , Aminas/toxicidade , Aminas/urina , Dano ao DNA , Fumaça/análise , Compostos Azo , Estilo de Vida , Fatores Socioeconômicos , Variação Genética
6.
Toxicol Lett ; 383: 192-195, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423373

RESUMO

Heterocyclic amines (HCAs) are mutagenic compounds found in cooked meat. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes, and we recently reported that HCAs induce insulin resistance and glucose production in human hepatocytes. It is well known that HCAs require hepatic bioactivation by cytochrome P450 1A2 (CYP1A2) and N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans that, depending on the combination of NAT2 alleles, correlates to rapid, intermediate, or slow acetylator phenotype that exhibits differential metabolism of aromatic amines and HCAs. No previous studies have examined the role of NAT2 genetic polymorphism in the context of HCA-mediated induction of glucose production. In the present study, we assessed the effect of three HCAs commonly found in cooked meat (2-amino-3,4-dimethylimidazo[4,5-f]quinoline [MeIQ], 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline [MeIQx], and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [PhIP]) on glucose production in cryopreserved human hepatocytes with slow, intermediate, or rapid NAT2 acetylator phenotype. HCA treatment did not affect glucose production in slow NAT2 acetylator hepatocytes, while a slight increase in glucose production was observed in intermediate NAT2 acetylators treated with MeIQ or MeIQx. However, significant increases in glucose production were observed in rapid NAT2 acetylators following each HCA. The current findings suggest that individuals who are rapid NAT2 acetylators may be at a greater risk of developing hyperglycemia and insulin resistance following dietary exposure to HCAs.


Assuntos
Aminas , Arilamina N-Acetiltransferase , Diabetes Mellitus Tipo 2 , Compostos Heterocíclicos , Resistência à Insulina , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Aminas/toxicidade , Aminas/metabolismo , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Compostos Heterocíclicos/metabolismo , Polimorfismo Genético
7.
Chem Res Toxicol ; 36(8): 1227-1237, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477941

RESUMO

The prediction of Ames mutagenicity continues to be a concern in both regulatory and pharmacological toxicology. Traditional quantitative structure-activity relationship (QSAR) models of mutagenicity make predictions based on molecular descriptors calculated on a chemical data set used in their training. However, it is known that molecules such as aromatic amines can be non-mutagenic themselves but metabolically activated by S9 rodent liver enzyme in Ames tests forming molecules such as iminoquinones or amine substituents that better stabilize mutagenic nitrenium ions in known pathways of mutagenicity. Modern in silico modeling methods can implicitly model these metabolites through consideration of the structural elements relevant to their formation but do not include explicit modeling of these metabolites' potential activity. These metabolites do not have a known individual mutagenicity label and, in their current state, cannot be fitted into a traditional QSAR model. Multiple instance learning (MIL) however can be applied to a group of metabolites and their parent under a single mutagenicity label. Here we trained MIL models on Ames data, first with an aromatic amines data set (n = 457), a class known to require metabolic activation, and subsequently on a larger data set (n = 6505) incorporating multiple molecular species. MIL was shown to be able to predict Ames mutagenicity with performance in line with previously established models (balanced accuracy = 0.778), suggesting its potential utility in Ames prediction applications. Furthermore, the MIL model predicted well on identified hard-to-predict molecule groups relative to the models in which these molecule groups were identified. These results are presumably due to the increased consideration of the metabolic contribution to the mutagenic outcome. Further exploration of MIL as a supplement to existing models could aid in the prediction of chemicals where implicit modeling of metabolites cannot fully grasp their characteristics. This paper demonstrates the potential of an MIL approach to modeling Ames tests with S9 and is particularly relevant to metabolically activated xenobiotic mutagens.


Assuntos
Mutagênicos , Relação Quantitativa Estrutura-Atividade , Mutagênicos/toxicidade , Mutagênicos/química , Mutagênese , Simulação por Computador , Aminas/toxicidade , Aminas/química , Testes de Mutagenicidade/métodos
8.
J Hazard Mater ; 454: 131541, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146326

RESUMO

Aromatic amines, one of the most widely used low-cost antioxidants in rubbers, have been regarded as pollutants with human health concerns. To overcome this problem, this study developed a systematic molecular design, screening, and performance evaluation method to design functionally improved, environmentally friendly and synthesizable aromatic amine alternatives for the first time. Nine of 33 designed aromatic amine derivatives have improved antioxidant property (lower bond dissociation energy of N-H), and their environmental and bladder carcinogenicity impacts were evaluated through toxicokinetic model and molecular dynamics simulation. The environmental fate of the designed AAs-11-8, AAs-11-16, and AAs-12-2 after antioxidation (i.e., peroxyl radicals (ROO·), hydroxyl radicals (HO·), superoxide anion radicals (O2·-) and ozonation reaction) was also analyzed. Results showed that the by-products of AAs-11-8 and AAs-12-2 have less toxicity after antioxidation. In addition, human bladder carcinogenicity of the screened alternatives was also evaluated through adverse outcome pathway. The carcinogenic mechanisms were analyzed and verified through amino acid residue distribution characteristics, 3D-QSAR and 2D-QSAR models. AAs-12-2, with high antioxidation property, low environmental impacts and carcinogenicity, was screened as the optimum alternative for 3,5-Dimethylbenzenamine. This study provided theoretical support for designing environmentally friendly and functionally improved aromatic amine alternatives from toxicity evaluation and mechanism analysis.


Assuntos
Rotas de Resultados Adversos , Carcinógenos , Humanos , Carcinógenos/toxicidade , Carcinógenos/química , Toxicocinética , Aminas/toxicidade , Aminas/química , Radical Hidroxila
9.
Food Funct ; 14(9): 4006-4016, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039336

RESUMO

As a class of bioactive and toxic compounds widely present in foodstuffs, the health effects of dietary exposure to ß-carboline heterocyclic amines (HAs) have not been elucidated. Based on our previous research that a typical ß-carboline HA (harmane) affects blood glucose metabolism and organ dysfunction, the present study mainly focused on the health effects of dietary exposure to harmane in diabetic Goto-Kakizaki (GK) rats. Twenty-four GK rats were administered daily with harmane (0.1 mg per kg body weight) for eight weeks. A comprehensive evaluation of the health effects of harmane was conducted on serum biochemistry, histopathology, and GC-TOF-MS-based metabolomics. The results showed that harmane exerts non-significant effects on the blood glucose metabolism of GK rats. However, it did cause pathological damage to gastrocnemius nerves and showed adverse effects on brain neurons by significantly activating astrocytes and downregulating brain-derived neurotrophic factor (BDNF), which are potential mechanisms related to the disruption of the normal glutamine-glutamate/γ-aminobutyric acid cycle. Moreover, an increased value of AST and urea, alterations in the amino acid, carbohydrate, purine, pyrimidine, and gut microbiota metabolism as well as the tricarboxylic acid (TCA) cycle could be associated with kidney, liver, and gut dysfunction. Our results suggest that given the role of harmane in nerve injury in GK rats, reducing the production and consumption of ß-carboline heterocyclic amines in our daily diets should be considered.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Ratos , Animais , Carbolinas/toxicidade , Glicemia , Dieta , Aminas/toxicidade
10.
Environ Res ; 221: 115264, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639013

RESUMO

Azo dyes used in textile products contain aromatic amines (AAs), which may be released into the environment after skin bacteria cleavage the azo bond. In Europe, 22 carcinogenic AAs are regulated. Unfortunately, no information is available in many non-European countries, including Brazil. This study aimed to determine the concentrations of 20 regulated AAs in clothes marketed in Brazil and Spain. Generally, higher levels of regulated AAs were found in samples sold in Brazil than in Spain, which is linked to the lack of regulation. Sixteen AAs showed concentrations above 5 mg/kg in samples commercialized in Brazil, while 11 exceeded that threshold in Spain. Regulated AAs with levels above 5 mg/kg were more found in synthetic clothes of pink color. Concentrations in clothing were also used to evaluate the dermal exposure to AAs in 3 vulnerable population groups. The highest exposure corresponded to 2,4-diaminoanisole for toddlers in Brazil and 4,4-oxydianiline for newborns in Spain. Non-cancer risks associated with exposure to 4,4-benzidine by Brazilian toddlers was 14.5 (above the threshold). On the other hand, 3,3-dichlorobenzidine was associated with potential cancer risks for newborns and toddlers in Brazil. Given this topic's importance, we recommend conducting continuous studies to determine the co-occurrence of carcinogenic substances.


Assuntos
Aminas , Têxteis , Recém-Nascido , Humanos , Brasil , Espanha , Aminas/toxicidade , Compostos Azo , Vestuário , Corantes/química
11.
Environ Pollut ; 319: 120936, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572270

RESUMO

Heterocyclic aromatic amines (HAAs) were not only present in cooked foods and cigarette smoke, but also measured in airborne particles and diesel-exhaust particles. Typical HAAs have been reported to induce carcinogenicity and metabolic disturbances, but how these hazardous compounds interfere with metabolic networks by regulating metabolic pathways and fingerprinting signature metabolites as biomarkers remains ambiguous. We developed an advanced strategy that adopted chemical isotope labeling ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry for urinary nontargeted metabolomics analysis to gain new insight into in vivo physiological responses stimulated by exposure to typical HAAs. Rats were orally administered with a single dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (1 and 10 mg/kg bw) and their D3-isotopic compounds, respectively, and urine samples were then continuously collected within 36 h. Metabolomics data were acquired and processed by classical multivariate statistical analysis, while urinary metabolites were further identified and characterized according to mass spectrometric fragmentation rules, time- and dose-dependent profiles, and calibration of synthesized standards. We monitored 23 and 37 urinary metabolites as the biotransformation products of PhIP and MeIQx, respectively, and first identified demethylated metabolites of PhIP, tentatively named 2-amino-6-phenylimidazo[4,5-b]pyridine, and dihydroxylation products of classical HAAs as short-term biomarkers of exposure to further unravel the metabolic networks. In addition, our findings revealed that both HAAs significantly disturb histidine metabolism, arginine and proline metabolism, tryptophan metabolism, pyrimidine metabolism, tricarboxylic acid cycle, etc. Furthermore, we found that histamine, methionine, alanine, and 4-guanidinobutanoic acid could be considered potential characteristic biomarkers for the oncogenicity or carcinogenicity of both PhIP and MeIQx and screened their specific key pivotal metabolites. The current metabolomics approach is applicable in mapping updated urinary metabolic fingerprints and identifying potential specific biomarkers for HAAs-induced early tumorigenesis.


Assuntos
Carcinógenos , Carne , Ratos , Animais , Carcinógenos/toxicidade , Carcinógenos/análise , Carne/análise , Biomarcadores/metabolismo , Redes e Vias Metabólicas , Aminas/toxicidade , Aminas/análise , Carcinogênese
12.
Nutrients ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079735

RESUMO

Whereas the mechanisms underlying the association of toxic dietary xenobiotics and cancer risk are not well established, it is plausible that dietary pattern may affect the colon environment by enhancing or reducing exposure to mutagens. This work aimed to investigate the association between xenobiotics intake and different stages of intestinal mucosal damage and colorectal cancer (CRC) screening and examine whether these associations may be mediated by altered intestinal mutagenicity. This was a case control study with 37 control subjects, 49 patients diagnosed with intestinal polyps, and 7 diagnosed with CRC. Lifestyle, dietary, and clinical information was registered after colonoscopy. For xenobiotics intake estimation the European Prospective Investigation into Cancer (EPIC) and the Computerized Heterocyclic Amines Resource for Research in Epidemiology of Disease (CHARRED) databases were used. The mutagenicity of fecal supernatants was assayed by the Ames test and light microscopy was used for the presence of aberrant crypt formation. Among all the potential carcinogens studied, the polyp group showed higher intakes of ethanol and dibenzo (a) anthracene (DiB(a)A). Besides, intakes between 0.75 and 1.29 µg/d of total polycyclic aromatic hydrocarbons (PAHs) were related with a higher risk of belonging to the polyp group. On the contrary, an intake of wholegrain cereals greater than 50 g/d was associated with a reduction in the relative risk of belonging to the polyp group. Heterocyclic amines (HAs) such as 2-amino-1-methyl-6-phenylimidazo (4,5,b) pyridine (PhIP) were associated with an increased level of mutagenicity in polyps. This study is of great interest for the identification of possible therapeutic targets for the early prevention of colon cancer through diet.


Assuntos
Neoplasias Colorretais , Mutagênicos , Aminas/toxicidade , Carcinógenos , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Dieta/efeitos adversos , Manipulação de Alimentos , Humanos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Estudos Prospectivos , Xenobióticos/toxicidade
13.
Food Chem Toxicol ; 168: 113380, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028061

RESUMO

The toxicity of co-formulants present in glyphosate-based herbicides (GBHs) has been widely discussed leading to the European Union banning the polyoxyethylene tallow amine (POEA). We identified the most commonly used POEA, known as POE-15 tallow amine (POE-15), in the widely used US GBH RangerPro. Cytotoxicity assays using human intestinal epithelial Caco-2 and hepatocyte HepG2 cell lines showed that RangerPro and POE-15 are far more cytotoxic than glyphosate alone. RangerPro and POE-15 but not glyphosate caused cell necrosis in both cell lines, and that glyphosate and RangerPro but not POE-15 caused oxidative stress in HepG2 cells. We further tested these pesticide ingredients in the ToxTracker assay, a system used to evaluate a compound's carcinogenic potential, to assess their capability for inducing DNA damage, oxidative stress and an unfolded protein response (endoplasmic reticulum, ER stress). RangerPro and POE-15 but not glyphosate gave rise to ER stress. We conclude that the toxicity resulting from RangerPro exposure is thus multifactorial involving ER stress caused by POE-15 along with oxidative stress caused by glyphosate. Our observations reinforce the need to test both co-formulants and active ingredients of commercial pesticides to inform the enactment of more appropriate regulation and thus better public and environmental protection.


Assuntos
Herbicidas , Aminas/toxicidade , Células CACO-2 , Excipientes , Gorduras , Herbicidas/toxicidade , Humanos , Necrose/induzido quimicamente , Polietilenoglicóis , Tensoativos/toxicidade
14.
Toxicol Appl Pharmacol ; 449: 116095, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662664

RESUMO

Humans are exposed to carcinogenic chemicals via occupational and environmental exposures. Common chemicals of concern that can occur in exposures together are aromatic amines (e.g., 4-aminobiphenyl [4-ABP] and ß-naphthylamine [BNA]) and hexavalent chromium (Cr[VI]). Arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2) are key to the metabolism of aromatic amines and their genotoxicity. The effects of Cr(VI) on the metabolism of aromatic amines remains unknown as well as how it may affect their ensuing toxicity. The objective of the research presented here is to investigate the effects of Cr(VI) on the metabolism and genotoxicity of 4-ABP and BNA in immortalized human lung epithelial cells (BEP2D) expressing NAT1 and NAT2. Exposure to Cr(VI) for 48 h increased NAT1 activity (linear regression analysis: P < 0.0001) as measured by N-acetylation of para-aminobenzoic acid (PABA) in BEP2D cells but not NAT2 N-acetylation of sulfamethazine, which are prototypic NAT1 and NAT2 substrates respectively. Cr(VI) also increased the N-acetylation of 4-ABP and BNA. In BEP2D cells the N-acetylation of 4-ABP (1-3 µM) exhibited a dose-dependent increase (linear regression analysis: P < 0.05) following co-incubation with 0-3 µM Cr(VI). In BEP2D cells, incubation with Cr(VI) caused dose-dependent increases (linear regression analysis: P < 0.01) in expression of CYP1A1 protein and catalytic activity. For genotoxicity, BEP2D cells were exposed to 4-ABP or BNA with/without Cr(VI) for 48 h. We observed dose-dependent increases (linear regression analysis: P < 0.01) in phospho-γH2AX protein expression for combined treatment of 4-ABP or BNA with Cr(VI). Further using a CYP1A1 inhibitor (α-naphthoflavone) and NAT1 siRNA, we found that CYP1A1 inhibition did not reduce the increased N-acetylation or genotoxicity of BNA by Cr(VI), while NAT1 inhibition did reduce increases in BNA N-acetylation and genotoxicity by Cr(VI). We conclude that during co-exposure of aromatic amines and Cr(VI) in human lung cells, Cr(VI) increased NAT1 activity contributing to increased 4-ABP and BNA genotoxicity.


Assuntos
Arilamina N-Acetiltransferase , Carcinógenos , 2-Naftilamina , Acetilação , Acetiltransferases/metabolismo , Aminas/toxicidade , Compostos de Aminobifenil , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Cromo , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/metabolismo , Humanos , Isoenzimas/genética , Pulmão/metabolismo
15.
Toxicol Ind Health ; 38(7): 417-434, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35592919

RESUMO

Today, tattooing has become very popular among people all over the world. Tattooists, with the help of tiny needles, place tattoo ink inside the skin surface and unintentionally introduce a large number of unknown ingredients. These ingredients include polycyclic aromatic hydrocarbons (PAHs), heavy metals, and primary aromatic amines (PAAs), which are either unintentionally introduced along with the ink or produced inside the skin by different types of processes for example cleavage, metabolism and photodecomposition. These could pose toxicological risks to human health, if present beyond permissible limits. PAH such as Benzo(a)pyrene is present in carbon black ink. PAAs could be formed inside the skin as a result of reductive cleavage of organic azo dyes. They are reported to be highly carcinogenic by environmental protection agencies. Heavy metals, namely, cadmium, lead, mercury, antimony, beryllium, and arsenic are responsible for cancer, neurodegenerative diseases, cardiovascular, gastrointestinal, lungs, kidneys, liver, endocrine, and bone diseases. Mercury, cobalt sulphate, other soluble cobalt salts, and carbon black are in Group 2B, which means they may cause cancer in humans. Cadmium and compounds of cadmium, on the other hand, are in Group 1 (carcinogenic to humans). The present article addresses the various ingredients of tattoo inks, their metabolic fate inside human skin and unintentionally added impurities that could pose toxicological risk to human health. Public awareness and regulations that are warranted to be implemented globally for improving the safety of tattooing.


Assuntos
Mercúrio , Hidrocarbonetos Policíclicos Aromáticos , Tatuagem , Aminas/toxicidade , Cádmio , Carcinógenos/toxicidade , Humanos , Tinta , Metais , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fuligem , Tatuagem/efeitos adversos
16.
Toxicol In Vitro ; 81: 105347, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35318113

RESUMO

A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (µ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent.


Assuntos
Aminas , Carcinógenos , Aminas/química , Aminas/toxicidade , Carcinógenos/química , Carcinógenos/toxicidade , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Solventes
17.
J Chem Inf Model ; 61(5): 2313-2327, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33977716

RESUMO

Human exposure to aromatic amines (AAs) can result in carcinogenic DNA adducts. To complement previous work geared toward understanding the mutagenicity of AA-derived adducts, which has almost exclusively studied (monoadducted) DNA containing a single lesion, the present work provides the first in-depth comparison of the structure of monoadducted and diadducted DNA duplexes. Specifically, molecular dynamics (MD) simulations were initially performed on DNA containing the nonmutagenic single-ringed N-(deoxyguanosin-8-yl)-aniline (ANdG) or the mutagenic four-ringed N-(deoxyguanosin-8-yl)-1-aminopyrene (APdG) lesion at G1, G2, or G3 in the AA deletion hotspot (5'-G1G2CG3CC) in the anti or syn glycosidic orientation (B/S duplex conformation). Subsequently, diadducted strands were assessed that span each combination of damaged sites (G1G2 (nearest neighbors), G2G3 (next-nearest neighbors), and G1G3 (two intervening nucleotides)) and anti/syn lesion glycosidic orientations. Despite other N-linked C8-dG adducts exhibiting sequence dependence conformational heterogeneity, a single ANdG or APdG lesion induces helical conformational homogeneity that is exclusively controlled by aryl moiety size. However, the preferred damaged DNA conformation can change upon the addition of a second adduct depending on lesion separation, with neighboring lesions stabilizing a nonmutagenic conformation and next-nearest damaged sites stabilizing a promutagenic conformation regardless of adduct size. As a result, diadducted DNA is found to adopt conformations that are unfavored for the corresponding monoadducted system, pointing to differential replication and repair outcomes for diadducted DNA compared to those for monoadducted DNA. Thus, although the toxicity of monoadducted DNA is most significantly dictated by lesion size, the toxicity can increase or decrease upon a second damaging event depending on lesion size and relative position. Overall, our work adds the number of lesions and their spatial separation to the growing list of factors that determine the structure and biological outcomes of adducted DNA.


Assuntos
Adutos de DNA , Simulação de Dinâmica Molecular , Aminas/toxicidade , DNA , Humanos , Conformação de Ácido Nucleico
18.
Int Arch Occup Environ Health ; 94(6): 1427-1439, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33651159

RESUMO

PURPOSE: Nine bladder cancer (BCa) cases were reported among aromatic amine-exposed male workers at a factory manufacturing organic dye/pigment intermediates in Japan. We aimed to evaluate the characteristics of aromatic amine-exposed workers by cross-sectional observation, and the risk of BCa by assessing the standardized incidence ratio (SIR). METHODS: In the cross-sectional study, our subjects were: 9 BCa patients, 36 aromatic amine-exposed non-patients, and 79 non-exposed workers from 3 factories. We evaluated the subjects' medical history, urinalysis, qualitative determination of nuclear matrix protein 22, and urinary cytology. For SIR assessment, 98 aromatic amine-exposed workers from 1 factory were included, and the Japanese general male population was used as a referent population. Since no direct aromatic amine-exposure data were available, we calculated surrogate exposure levels using information on job sites, exposure potency, and duration. RESULTS: Coexistent aromatic amines were ortho-toluidine (OT), aniline, para-toluidine, ortho-anisidine, 2,4-xylidine, and ortho-chloroaniline. The prevalence rates of cystitis and bladder lesion-related symptoms in both BCa patients and aromatic amine-exposed non-patient workers were significantly higher than those of non-exposed workers. Overall, the SIR for BCa in OT-exposed workers was 56.8 (95% CI 27.7-104.3) and apparent dose-response relationships were revealed between the SIR and the surrogate exposure level in the 0-10-year lagged analyses. Overall, SIRs in other aromatic amine-exposed workers were also significantly high but no or unclear dose-response relationships were observed. CONCLUSIONS: We conclude that OT may be responsible for the increased risk of BCa. Regular monitoring of bladder lesion-related symptoms is essential for the early identification of BCa.


Assuntos
Aminas/toxicidade , Carcinógenos/toxicidade , Exposição Ocupacional/efeitos adversos , Neoplasias da Bexiga Urinária/epidemiologia , Adulto , Cistite/epidemiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Incidência , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Risco , Adulto Jovem
19.
Mol Divers ; 25(2): 1137-1144, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323128

RESUMO

The similarity is an important category in natural sciences. A measure of similarity for a group of various biochemical endpoints is suggested. The list of examined endpoints contains (1) toxicity of pesticides towards rainbow trout; (2) human skin sensitization; (3) mutagenicity; (4) toxicity of psychotropic drugs; and (5) anti HIV activity. Further applying and evolution of the suggested approach is discussed. In particular, the conception of the similarity (dissimilarity) of endpoints can play the role of a "useful bridge" between quantitative structure property/activity relationships (QSPRs/QSARs) and read-across technique.


Assuntos
Modelos Moleculares , Aminas/química , Aminas/toxicidade , Animais , Ansiolíticos/química , Ansiolíticos/toxicidade , Antidepressivos/química , Antidepressivos/toxicidade , Antipsicóticos/química , Antipsicóticos/toxicidade , Cosméticos/química , Cosméticos/toxicidade , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Haptenos/química , Haptenos/toxicidade , Humanos , Dose Letal Mediana , Ensaio Local de Linfonodo , Mutagênicos/química , Mutagênicos/toxicidade , Oncorhynchus mykiss , Praguicidas/química , Praguicidas/toxicidade , Fenotiazinas/química , Fenotiazinas/toxicidade , Relação Quantitativa Estrutura-Atividade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
20.
Arch Toxicol ; 95(1): 311-319, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33136180

RESUMO

Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT2*4) and slow (NAT2*5B or NAT2*7B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT2*4, NAT2*5B, or NAT2*7B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT2*4 versus NAT2*5B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.


Assuntos
Aminas/metabolismo , Compostos de Anilina/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/metabolismo , Fibroblastos/enzimologia , Variantes Farmacogenômicos , Acetilação , Aminas/toxicidade , Compostos de Anilina/toxicidade , Arilamina N-Acetiltransferase/genética , Carcinógenos/toxicidade , Linhagem Celular Transformada , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Haplótipos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Medição de Risco , Especificidade por Substrato , Transfecção , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA